From Dolly to disease models in a dish

Ian Wilmut MRC Centre for Regenerative Medicine

MRC Centre for Regenerative Medicine Edinburgh

ian.wilmut@ed.ac.uk

www.crm.ed.ac.uk

Cloning, stem cells and regenerative medicine

- Understanding the control of development
- Biomedical products
- Animal models of human diseases
- Patient specific cell lines
- Animal stem cell lines

Fundamental research questions

How does the single cell of an embryo form all of the tissues of an adult?

Is genetic information lost as development takes place?

Nuclear transfer in frogs Briggs and King 1952; Gurdon 1962

- Donor nucleus from cells of albino embryos
- Egg from dark green frog
- Many albino frogs

- Efficiency drops with nuclei from later stages
- There have been no adult clones of adult frogs

First nuclear transfer in mammals Willadsen Nature 1986

 Two embryos derived by nuclear transfer

 Cloned cross-bred lamb (on the left)

 Clones only from early embryos

1997

First clone of an adult animal

- Better co-ordination of donor and recipient cells
- Donor cell from mammary gland of Finn Dorset ewe early in 3rd trimester pregnancy
- Egg without nucleus from Blackface ewe
- Surrogate mother Blackface ewe
- Death age 6 after virally induced lung cancer

1996 – 2006 10 years of somatic cell cloning

MULE 2003

DEER 2003

HORSE 2003

DOG 2005

FERRET 2006

Fundamental research questions

How does the single cell of an embryo form all of the tissues of an adult?

 Is genetic information lost as development takes place?

Apparently not

•Can cell function be modified?

•Yes, but inefficiently

Biology of stem cells

Opportunity through cloning

Genetic modification of animals

Xenotransplantation

Production of human proteins

Animal Disease Models

Production of human antibodies from cattle Hematech : Jim Robl, Phillipe Collas

- Created artificial chromosome
 - Carrying human heavy and light chain locii
- Introduced into fetal fibroblasts
- Cloned to make embryos transferred to recipients
- Calves born expressed human genes
- Deleted bovine immunoglobulin genes and PrP
- Antibodies produced against anthrax

Disease models

Pig model of cystic fibrosis Rogers et al 2008 Science

Disruption of both CFTR alleles

Defective chloride transpor Developed meconium ileus, Exocrine pancreatic destruction Focal biliary cirrhosis,

Abnormalities seen in newborn patients with CF.

Reprogramming by expression of defined genes – iPS cells

Shinya Yamanaka

4 factors can induce pluripotency

Induced pluripotent stem cells

Directed fate conversion

Directed fate conversion

What are the limits to reprogramming?

Changes can be made from one tissue to another

Expectations for the future

- Fate change of cells will be routine
- Procedures will be simplified
- Accuracy of change improved
- New sources of cells offer a great deal
 - Used for research
 - Library established for cell therapy
 - Opportunity for gene therapy ??

Beginning of a new era

Potential uses of stem cells

Stem cell derivatives used to replace cells that have died or no longer function normally

Can stem cells identify new drugs for specific diseases ?

- Many inherited diseases have no treatment
- Produce cells identical to patient
- Can study cause of disease

Can stem cells identify new drugs for specific diseases ?

- Many inherited diseases have no treatment
- Produce cells identical to patient
- Can study cause of disease
- Use these cells to look for new drugs
- These then tested in animals before use

Mechanisms in sporadic and inherited cases will sometimes be the same

Modelling familial dysautonomia Lee et al, Nature Sept 2009

- Rare but fatal disease caused by death of specific nerves,
- Point mutation in a gene (IKBKAP8)
- Involved in function of other genes
- Tissue-specific defect?
- Varying reduction in level of normal IKAP protein

Familial dysautonomia

Cells derived from

patients and controls

- Hnk1 Neural crest
- Forse1 Neural rosette

CD45 HSC

- CD144 Endothelial cells
- CXCR4 Endoderm

Kinetin as a candidate therapeutic Lee et al 2009

Inclusion of kinetin reduced the production of shorter transcript in neural crest cells

Kinetin as a candidate therapeutic Lee et al 2009

Inclusion of kinetin reduced the production of shorter transcript in neural crest cells

- Differences in gene function mimiced in iPS cell derivatives
- Tissue specificity of the effect unexpected
- First candidate drug identified
- May provide effective test system

Value of iPS cells in research

- iPS cells offer important advantages
 - No need to know causative mutation
 - Can assess effect of other genetic variation
 - Readily obtained

• Inherited cases will sometimes inform sporadic cases

- Motor neuron disease, Parkinson's , cancers
- Psychiatric diseases, inherited learning difficulty

There are a very large number of inherited diseases

Cloning, stem cells and regenerative medicine

- Understanding the control of development
- Biomedical products
- Animal models of human diseases
- Patient specific cell lines
- Animal stem cell lines

