REPRODUCTIVE TECHNOLOGY

George Seidel Colorado State University

Background Science and scientists Experimental animals Target animals Tools **Applications ♦**Current **Future Ethics**

Science

Create new knowledge
Thinking
Experiments
Apply knowledge
Teach, publish information

Target Animals

Laboratory animals Farm animals Companion animals – dogs, cats, horses Wildlife and zoo animals People

Experimental Animals Laboratory animals Farm animals Target animals

Omne Vivum Ex Ovo Egg (oocyte) First week of embryonic development Sperm also essential

TOOLS

Half of Nobel prizes in physiology or medicine concern new tools

Revolutionary Tools Recombinant DNA Cryopreservation of embryos Transgenic technology Somatic cell nuclear transplantation **Polymerase chain reaction** Fertilization by sperm injection Stem cell biology

Embryos Create by IVF or recovery from the reproductive tract Culture for days Freeze and store at -196°C for decades Determine sex Determine genetic make-up

Embryos Separate cells to make identical twins, triplets, quadruplets Mix 2 embryos to make chimera Add, delete, or correct genes Transfer to reproductive tract to make an animal/person

The Tools of Reproductive Technology

Superovulation

Seidel 501 slide #59

Seidel 501 slide #60

3- to 10-fold increase in egg production

Embryo Recovery and Transfer

Rescuing Genetics
 Animals infected with viruses

Circumvent infertility
 Endangered species

SEXING SPERM HO33342 binds to DNA X- sperm have more DNA Aim laser light at sperm HO33342 fluoresces Measure fluorescence **Computer analysis**

Sorting by charge

Johnson et al., J. Anim. Sci. 77, Suppl. 2J:213-220, 1999

SPERM SORTER 25,000 sperm/sec 80,000 drops/sec 180,000 measurements/detector/sec 80 km/hour Cost: >\$500,000 for 2-nozzle version

PURITY

Can exceed 95%

Industry standard = 90%

More pure = more expensive

Similar accuracy X and Y

Sex is THE most important genetic trait

Cryopreservation
Sperm
Oocytes
Embryos

In Vitro Fertilization
2010 Nobel prize
Conventional
Sperm injection

Applications **Subfertile males** Damaged sperm due to liquid nitrogen tank failure **Freeze-dried sperm** Weeks at room temperature Year at -20°C

Micromanipulation and Microsurgery

TRANSGENESIS **ADD GENES** DELETE GENES

CORRECT GENES

Seidel 501 slide #101

More Futuristic Ideas
 Transgenic bulls that only produce X (or Y) sperm
 Hibernation of beef cows

Growth Genes on Y Chromosome Females remain smaller Extra growth expressed only after birth Sexed semen Larger males Smaller females

Offspring with 2 genetic fathers

Recreate Woolly Mammoth

Frozen carcasses found in Siberia DNA best preserved in sperm Use oocytes from elephants Sperm are dead – use sperm injection 2X sperm = female 1X + 1Y sperm = male **Biological issues, e.g. imprinting Ethical issues**

Scientific Ethics Fabrication of data Falsification of data Plagiarism Self correcting

Experimental Animals Treat humanely Environment/facilities Health and nutrition Minimize pain and stress Trained personnel Anesthetics and analgesics Good experimental design

Acknowledgements AVANTEA invitation Many mentors Scientific colleagues and students Technical and secretarial colleagues